

K e t t e r i n g U n i v e r s i t y R o b o t i c s T e a m | I G V C 2 0 1 3 | r o b o t i c s @ k e t t e r i n g . e d u

Kettering B - IGVC Design Report
Horcasitas Jorge, Lombardi Lex, Seeman Garrett
This document contains the mechanical, electrical, and software design and system
overview of the Kettering University B Section robot entry, R. Daneel Olivaw II, for the 2013
Intelligent Ground Vehicle Competition.

IGVC 13

08 Fall

Required Faculty Advisor Statement

I certify that the engineering design of the robot, R. Daneel Olivaw II, described in this report, has been

significant and equivalent to what might be awarded credit in a senior design course.

R. Daneel Olivaw II

Introduction

The B Section Kettering Robotics Team has learned much from last year’s

submission, including the importance of considering system integration in a high level

design and leaving ample time for robot testing. Since last year, we have completely

revised our software high level design, updated our electronics configuration, and

recruited new team members, among other things. It is our pleasure to introduce this

year’s submission, R. Daneel Olivaw II.

Similar to last year’s submission, our design philosophy focused on finding low cost

and low man-hour solutions. For example, we are using the 24V electric motors and the

acrylic spacer from the 2005-2006 Bulldog I/II IGVC entry. Expenses saved through the

reuse and repurposing of older materials allowed us to focus our budget on more critical

components like sensors, controllers, circuits, and batteries. Generous donations by Jervis

B Web included high quality batteries, a primary power contactor, an on/off switch, an e-

stop button, and an indicator stack. Porcupine Electronics, LLC also graciously offered

two of their Fluke laser rangefinder interface boards we are now using for our laser

rangefinder component.

We relied on open source hardware and the maker movement knowledgebase to

provide proven solutions to common problems. The result of our design is a remarkably

agile, durable, and easily implementable ground vehicle.

2012 – 2013 Team
Jorge E. Horcasitas Team Captain, Software Project Manager

Lex Lombardi Electrical and Mechanical Lead

Garrett Seeman Software Lead, Software Product Owner

Michael Graham Business Development Director

Jonathan Neuendorf Electrical

Justin Katnik Electrical

Joe Angelo Mechanical

Loi Huynh Software

Jacob Keeler Software

Douglas Blaisdell Software

Strategy

Software

Our school’s schedule poses a major challenge: The team is only on campus for

twenty-two weeks per year with a three month break after the first eleven weeks. This

prompted the software team to adapt, and later modify, the Agile Scrum software

development process in an attempt to increase development speed and easily break up the

various components. The software team itself had three developers, a scrum master, and

product owner (doubling as the lead developer).

Although the team initially wanted to create various sprints for the effort, we quickly

realized that the already rapid environment at our school made it difficult to maintain the

weekly standups, long planning meetings, and retrospectives used in Scrum. Stand-up

meetings were instead held weekly and one running backlog was used to keep track of

effort remaining.

Mechanical

R. Daneel is shaped like a triangular tub. It has 3 wheels; two are independent drive

and the third is a trailing caster wheel. This drive method allowed us to integrate our

forward, backward, and turning motion controls into only two control values: left and

right motors. The low speed agility and ability to turn about the center of the drive axle fit

with our design criteria well.

The polygonal body shape was designed in Solidworks and cut by our team on a CNC

plasma cutter. Steel was selected primarily for its ease of fabrication.

The drawback of this low design is not having enough vertical height to meet the

emergency stop requirement and sensor needs. Late in the design process a tail stack and

sensor mast were fabricated to address these issues.

Electrical

Our low cost/low man-hours maxim is echoed throughout the design of the electrical

system. Prebuilt components with standardized connectors were our first choice

throughout the entire build. Except for the motors, every individual electrical component

can be removed and reinstalled without the need to first remove another nearby

component or access panel.

Our electrical system consists entirely of commodity hardware. For example, our

mainboard is the Foxconn H67S. It is common, inexpensive, powerful, and small. Early

in the design process we agreed on a USB interface for all of our sensors and actuators.

Mechanical Design

Fabricated out of 10ga steel sheet, the shape of the tub allowed us to drill and mount

components anywhere, providing rapid development.

Independent drive was the logical choice for our design criteria, especially because

we already own a pair of wheelchair motors used in Kettering’s 2005 and 2006 IGVC

entrant, Bulldog I/II. These off-the-shelf geared motors are intended for use in

wheelchairs with similar loads and speed requirements – high torque and low output

speed. This provides an excellent balance between simplicity of control, design time, and

agility.

Our first challenge was to determine the ideal size and type of wheels and tires that

would match the grassy competition surface and the maximum output shaft velocity of

our motors. Through persistent searching, our team was able to locate two ideally sized

wheels and tires. A golf cart repair business had used golf cart wheels and tires with an

outer diameter of 17.5”. Our motor’s maximum output shaft speed is 220rpm. This

provided an ideal solution for a vehicle traveling over a grassy field at a limited speed of

10mph. Taking the maximum motor speed and the diameter of the outside of the tire, we

can find the theoretical top speed of the vehicle.

 55in

In this type of vehicle, a wide track further facilitates maneuverability by providing a

long lever arm to rotate about the vertical axis. The track is 3ft wide, and a significant

amount of weight is near or below the axles. The force required to rotate about the center

point of the axles is minimal compared to a similarly designed and operated 4-wheel skid

steer. Changes in heading are accurate, efficient, and even graceful.

The ideal location for the center of gravity is low and centered between the axles. The

shape of the tub provides a low center of gravity designed for low-speed stability. The

batteries and the drive motors are the heaviest components. Naturally, we decided to

mount them symmetrically and as close to the drive wheels as was practical.

The trailing end of our vehicle is supported by a single caster wheel. A rectangular 4-

wheel chassis with two caster wheels was also considered. Our primary concern was that

two or more caster wheels may turn in opposite directions and bind at a potentially

critical moment. Our team settled on a single caster.

The open shape of the tub provided us with a burly, drillable surface area. This

allowed for rapid, flexible design and ease of assembly to provide adjustable, stable

mounting locations. This mast incorporates the GPS, IMU, vision system and ultrasonic

and laser rangefinders into one easy to install package and provides for each sensors

particular needs.

A tail stack is the final feature of our vehicle. It adds 1.5ft of height to the tail of the

vehicle. It serves as an ideal location for the emergency stop button, indicator lights, and

camera. The indicator stack is mounted at the top of the tail stack, displaying the

vehicle’s operating condition. Red indicates E-stop, yellow continuous indicates manual

control, yellow flashing indicates automatic control, and green indicates power.

A mount was added on the front of the chassis to accommodate our two laser

rangefinders. A servo is used to rotate the laser rangefinders about the vertical axis.

However, it was determined that a second servo for rotation about the horizontal axis

would provide minimal benefit during operation while introducing more that would need

to be controlled. Thus, we use a bolt and wing nut to manually adjust the laser

rangefinders about the horizontal axis. Two "L" brackets were used to attach this mount

to the front of the chassis allowing enough space for the laser rangefinders to rotate.

Electrical Design

Emergency Stop System
Both wireless and manual emergency stop functionality is included. The manual

deactivation control is activated by a large red button on the tail stack. Both the manual

input and the wireless input must be energized for the emergency stop relay to be

energized and allow the vehicle to drive. When de-energized, the emergency stop relay

directly shunts both of the motors leads’ to ground, forcing the vehicle to stop. The red

light in the indicator stack illuminates when the fail-safe is activated, clearly broadcasting

its emergency stop condition.

Sensors
Our inertial measurement unit (IMU) is a YEI 3-Space. It contains an integrated

accelerometer, gyroscope, and

magnetoscope as well as a

microcontroller that processes the

raw input. This sensor provides

easy integration with LabVIEW,

excellent resolution and a USB

interface. Our GPS sensor, a

GlobalSat BU-353, is an all-in-

one USB device as well. Our

vision system uses a Microsoft

LifeCam Studio capable of

delivering 1080p at 15fps.

Microcontroller
An Arduino works as a

single embedded solution to tie

all of our non-USB sensors and

actuators to a single USB port. It

hosts our ultrasonic rangefinders,

laser rangefinder servo control,

and controls the autonomous

indicator light. The Arduino is

also responsible for detecting

emergency stop conditions and

informing the control software an

emergency stop has occurred.

The Arduino uses a predefined

packet structure over a USB COM port. The largest reason for choosing an Arduino is

that they are cheap and easy to use, with a wide variety of freely available code online.

Motor Controller
Our motor controller, a Roboteq 50V SDC2150 was selected for its flexibility. Its

native USB and RC pulse input allow us to program auto fallback of control in case of a

loss of autonomous control. At any point the operator can override autonomous control

remotely as well, which is useful during testing. When specifying the motor controller,

we measured our motor’s stall current and considered this the expected continuous load.

This method tends to oversize controllers by a significant margin. However during testing

we found the motor controller to be underpowered. We realized our data on stall current

was erroneous due to the weak power supply used during testing. We intend to correct

this in our design for IGVC 2014.

Processing
An off/on/start selector controls power to the entire system. The start position is

connected to the mainboard and boots the PC directly through its PWR_ON header. We

use a quad core i5 at 2.6GHz with 8GB of ram. For power we use a Mini-Box M4 DC-

DC ATX power supply. These power supplies provide for an array of programmable

options from a USB interface and offer an independent, hardware switch activated

standard ATX power supply mode. Though it is overkill for our needs, this system was

less expensive than any other design we considered.

Software Design

High Level Design

The system is divided into eight components with each having specific functions that

ultimately enable the system to perform according to the IGVC software requirements.

Our approach is one that enforces separation of concerns among components to

ensure a modular system is implemented. A decoupled, modular system enables testing of

independent components and allows the team to swap out hardware or create new

implementations of each component at any time without having a negative impact on the

rest of the system.

The design of how each component’s implemented is found in the component model

on the following page. The UML interfaces represent the LabVIEW cluster datatype and

will enforce specific data publishing (output) and subscribing (inputs) per component

regardless of its lower-level implementation.

Timers

All components will have timers with predefined expiration times. When a

component’s timer expires, the component shall do the following: read data from any

cluster it is subscribed to, perform its internal operations, and write data to the cluster it

publishes. Effectively, the data clusters provide a snapshot of the data published per

component from the last time its timer expired. The Component Design section specifies

what each component’s published data cluster contains. The expiration times of each

component’s timer is found below.

 IMU – Every 50 milliseconds (ms)

 GPS – Every 500 ms

 Vision – Every 200 ms

 Laser Rangefinder – Every 20 ms

 Ultrasonic Rangefinder – Every 20 ms

 SLAM – When any timer expires

 Pathfinder – Every 3000 ms

 Drive – Every 50 ms

Simultaneous Localizer and Mapper (SLAM) Component

Localization

The robot determines its location based on data from the GPS and IMU components.

It is important that this location be as accurate as possible as all data collected is recorded

based on where the robot believes it is. In order to facilitate this, we start out stationary

until the GPS returns a location within a reasonable amount of error. This position gets

saved as the offset and every position recorded in the future is transformed into a map

location based on this offset.

Since the GPS only returns a reading every 500ms or so, the IMU is used to track the

robot’s position in between readings. If for some reason a GPS reading returns with a

large amount of error, we ignore that reading and keep tracking based on the data the

IMU is returning until the GPS samples an accurate reading.

Mapping

The robot stores all the information it collects about its environment from the LR4

and the Vision sensors in a large occupancy grid consisting of a couple million 100cm^2

cells represented as a two dimension array. Since this is running on a desktop

motherboard, there is plenty of memory available, eliminating the main disadvantage of

this approach over something such as a quadtree. Each cell consists of two 8-bit integers

indicating: the number of times this cell has been updated, and the probability (from 0 –

255) of an obstacle existing. When an obstacle is detected in a cell, increment the update

number then divide 255 by the number of updates and add that to the current location’s

obstacle probability. If the cell is recorded as blank, subtract instead. We treat a number

over 30 to be occupied and a number less than that to be free. This parameter can be

manually adjusted to better suit the environment and the error rate of our sensors.

Pathfinder Component and Obstacle Avoidance

In order to find its way around the course, the robot uses a modified version of the A-

Star pathfinding algorithm. The pathfinding component was created from scratch in

LabVIEW in order to integrate easily with the rest of the projects code base. A-Star was

chosen over other approaches (such as D-Star or LPA*) because it is more simple to code

and we have more control over when it runs. Traditional A-Star is not fast enough to sift

through a map of millions of nodes in a matter of seconds, so an optimization routine

called Jump Point Search (JPS) is applied which drastically reduces path calculation time

by a couple orders of magnitude, depending on the situation. JPS reduces the time spend

iterating over large areas of open space.

These iterations require a significant amount of time searching the open list for

updated nodes which takes an increasing amount of time as the open list increases in size.

The JPS optimization essentially replaces this operation by recursively opening

neighboring nodes if they have no obstacles as neighbors, and picking only one of many

symmetric paths. By choosing the path that takes any required diagonal moves as soon as

possible it eliminates a large amount of the search and drastically reduces the number of

nodes in the open list.

Once a path is found, it is then passed to the drive program. For sequential iterations

for paths that are quite long an additional optimization will only recalculate the beginning

half of the path. This quickly updates the path with any changes around the robots

immediate vicinity, preventing collisions with previously unseen obstacles or obstacles

that are difficult to detect at a distance such as the boundary lines.

Vision Component

The lane detection algorithm takes the images from the camera and applies an HSL

threshold to translate them into a binary red-and-black map, where the red represents the

white pixel (essentially the white lanes on the ground), and the black represents

everything else. The algorithm splits the image into two equal halves, and each half will

is split into eight equal rows. Every section of those 16 areas will be put into a “best-fit-

line” VI to calculate the best fit regression line.

There is a great deal of noise in this best-fit-line, and sometimes the algorithm does

not yield the best line to represent the current situation if there is no noise anywhere.

For the left half of the

image, we only use the

points which belong to the

range from LQ to max. For

the right half of the image,

we only use the points

which belong to the range

from min to UQ. We repeat the above method twice, so that we can filter more noise. The

method that we use to reduce the noise is to filter the points by the idea of calculating

quartile.

Once lines have been superimposed on the image, a pixel coordinate to decimeter

convert is used. This part of the code is used to change the lines found by the vision

program into obstacles with set positions. Once the vision program finds points on the

lines it draws across the camera images, the Coordinate to Decimeter Converter changes

these coordinates to discrete distance values.

In order to find how far forward the point is, the converter relies on the height and

vertical angle of the camera. The forward distance can be solved for by finding the

product of the height and the tangent

of the angle of the particular pixel of

the camera.

The distance horizontally from

the robot must also be found in order

to provide a location for the

obstacle. This can be found using

the forward distance and the

horizontal camera angle. The

horizontal distance can be solved for

by finding the product of the

forward distance and the tangent of the horizontal angle of the particular pixel of the

camera. The distances of these points are then sent to the SLAM component to be

mapped as obstacles.

point of interest

Laser Rangefinder Component

The Laser Rangefinder Component is responsible for extracting distance

measurements from the two LR4 Laser Rangefinders asynchronously. Since the Fluke

414Ds we are using have a sample rate of ~400ms, the rangefinders shall be sampled at

200ms offsets from each other to increase the total sample rate to ~200ms. The data is

used by the Mapper in the SLAM Component.

Ultrasonic Component

The Ultrasonic Component is responsible for extracting data from a microcontroller

reporting instance measurements from 2 ultrasonic sensors. The data is used to create a

proximity sensor used to stop the robot if objects come within two to three decimeters

from the front of it. During this time, the robot will recalculate its path. This value is

tuned during testing for optimal stop conditions.

IMU Component

The IMU component is responsible for extracting data from the IMU hardware;

specifically the change in positions since last reading. This data is used by the Localizer

in the SLAM Component. The data includes change in X and Y position as well as

change in angle since the last sample (timer expiration).

GPS Component

The GPS component is used to read the Latitude and Longitude position of the robot

every 700 milliseconds from the GPS hardware. The data is used by the Localizer in the

SLAM Component. This component is used along with the IMU component to determine

the robots current point on the map.

	Introduction
	2012 – 2013 Team
	Strategy
	Software
	Mechanical
	Electrical

	Mechanical Design
	Electrical Design
	Emergency Stop System
	Sensors
	Microcontroller
	Motor Controller
	Processing

	Software Design
	High Level Design
	Timers
	Simultaneous Localizer and Mapper (SLAM) Component
	Localization
	Mapping

	Pathfinder Component and Obstacle Avoidance
	Vision Component
	Laser Rangefinder Component
	Ultrasonic Component
	IMU Component
	GPS Component

